Identifying optimal monitoring strategies to predict soil hydraulic characteristics and water contents by inverse modeling

Author:

Scherger Leonardo E.ORCID,Valdes-Abellan JavierORCID,Lexow ClaudioORCID

Abstract

Aim of study: To investigate the monitoring strategies that let us to build effective models able to best estimate water contents, θ and pressure heads, h with the least amount of data. Area of study: Field data was acquired in an experimental plot at Bahía Blanca (Argentina). Material and methods: Field data of θ(t), h(t) for six soil depth were used to optimize the SHP (θr, θs, α, n and Ks) by inverse modeling with HYDRUS 1D. Several scenarios of available data from θ(t) and h(t) were considered: (1) six monitoring depths (6-MD); (2) five monitoring depths (5-MD); (3) four monitoring depths (4-MD). Model accuracy was assessed by comparing the measured and predicted θ and h for each monitoring strategy. Additionally, field measured SHP with independent methods were compared to inversely optimized SHP. Main results: The best fit between predicted and observed θ and h was achieved with the 6-MD strategy. Nevertheless, deterioration of statistics EF and rRMSE in the 5-MD or 4-MD schemes were lower than 10%, depending on the location of the missing data. The observation points that had less importance in parameter prediction corresponded to the intermediate vadose zone and to the deeper layers. The proposed strategies presented a better performance than field measured SHP to reproduce soil water retention curves for each layer of the soil profile. Research highlights: By reducing the number of vertical observations in the profile without harming the final SHP estimation, the resources needed in data monitoring strategies can be greatly enhanced.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3