Seasonal dynamics of soil microbial biomass in fragmented patches of subtropical humid forest of Jaintia hills in Meghalaya, Northeast India

Author:

Pao Ngakhainii TruneORCID,Upadhaya KrishnaORCID

Abstract

Aim of the study: The aim of the study was to assess the seasonal dynamics of microbial biomass and its contribution to soil system along a fragment size gradient in subtropical humid forest of Meghalaya.   Area of study: The study was conducted in forest fragments located at Jarain and adjoining areas in Jaintia Hills of Meghalaya, northeast India.Material and Methods: Forest fragments of sizes ranging from 3.8 to 105 ha were selected for the study and grouped into Small (< 5 ha), Medium (> 5 and < 15 ha), Large (>15 and < 50 ha) and Very Large (105 ha) classes. Three experimental plots each of 20 x 20 m were established at the forest edge and at 50 m distance assigned as ‘interior’ microsite in each of the fragments for sampling of soil. Soil samples (0-10 cm depth) from each of the experimental plots were collected in replicates on seasonal interval and microbial biomass was estimated by the fumigation extraction method.Important findings: Microbial biomass- C, -N and -P varied significantly (p< 0.05) between the fragment sizes, microsites and seasons. The microbial biomass was higher in the interior as compared to the edge. It was also high during the winter season. Overall, soil microbial biomass -C, -N and -P ranged from 260 to 969; 25 to 95 and 8 to 67 µg g-1 respectively. The contribution of microbial biomass -C, -N and -P to soil organic carbon, total Kjeldahl nitrogen and phosphorus ranged from 1.48 to 1.81 %, 2.54 to 4.54 % and 3.41 to 5.22 % respectively. Fragmentation alters the microenvironmental conditions and soil properties that in turn affect the microbial biomass. Highlights: This interaction of plant, soil and microbial community would gradually degrade in the fragments due to change in vegetation composition and structure, microclimatic conditions and soil physical and chemical properties. Our results suggests that microbial mediated ecosystem processes such as nutrient cycling are more susceptible to variation at the edge which may become unstable and unpredictable in forest fragments exposed to various human disturbances.Keywords: fragment size, microbial biomass, microenvironment, subtropical forest.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Soil Science,Ecology, Evolution, Behavior and Systematics,Forestry

Reference50 articles.

1. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C, 1974. Chemical Analysis of Ecological Materials. London: Blackwell Scientific Publication.

2. Anderson JM, Ingram JSI, 1993. Tropical Soil Biology and Fertility. A Handbook of Methods. U.K.: CAB International, Wallingford.

3. Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India.;Arunachalam;Biol Fertil Soils,1999

4. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest.;Barbhuiya;Eur J Soil Biol,2004

5. Effects of disturbance of fine roots and soil microbial biomass C, N and P in a tropical rainforest ecosystem of Northeast India.;Barbhuiya;Curr Sci,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3