Automatic Evaluation of Histological Prognostic Factors Using Two Consecutive Convolutional Neural Networks on Kidney Samples

Author:

Marechal Elise,Jaugey Adrien,Tarris Georges,Paindavoine Michel,Seibel Jean,Martin Laurent,Funes de la Vega Mathilde,Crepin Thomas,Ducloux Didier,Zanetta Gilbert,Felix Sophie,Bonnot Pierre Henri,Bardet FlorianORCID,Cormier Luc,Rebibou Jean-Michel,Legendre Mathieu

Abstract

Background and objectivesThe prognosis of patients undergoing kidney tumor resection or kidney donation is linked to many histologic criteria. These criteria notably include glomerular density, glomerular volume, vascular luminal stenosis, and severity of interstitial fibrosis/tubular atrophy. Automated measurements through a deep-learning approach could save time and provide more precise data. This work aimed to develop a free tool to automatically obtain kidney histologic prognostic features.Design, setting, participants, & measurementsIn total, 241 samples of healthy kidney tissue were split into three independent cohorts. The “Training” cohort (n=65) was used to train two convolutional neural networks: one to detect the cortex and a second to segment the kidney structures. The “Test” cohort (n=50) assessed their performance by comparing manually outlined regions of interest to predicted ones. The “Application” cohort (n=126) compared prognostic histologic data obtained manually or through the algorithm on the basis of the combination of the two convolutional neural networks.ResultsIn the Test cohort, the networks isolated the cortex and segmented the elements of interest with good performances (>90% of the cortex, healthy tubules, glomeruli, and even globally sclerotic glomeruli were detected). In the Application cohort, the expected and predicted prognostic data were significantly correlated. The correlation coefficients r were 0.85 for glomerular volume, 0.51 for glomerular density, 0.75 for interstitial fibrosis, 0.71 for tubular atrophy, and 0.73 for vascular intimal thickness, respectively. The algorithm had a good ability to predict significant (>25%) tubular atrophy and interstitial fibrosis level (receiver operator characteristic curve with an area under the curve, 0.92 and 0.91, respectively) or a significant vascular luminal stenosis (>50%) (area under the curve, 0.85).ConclusionThis freely available tool enables the automated segmentation of kidney tissue to obtain prognostic histologic data in a fast, objective, reliable, and reproducible way.

Funder

NEPHRIN-APJ2019 (Appel d’offre jeunes chercheurs) GIRCI EST

Publisher

American Society of Nephrology (ASN)

Subject

Transplantation,Nephrology,Critical Care and Intensive Care Medicine,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3