Affiliation:
1. Division of Nephrology, Department of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
Abstract
Mg2+, the fourth most abundant cation in the body, serves as a cofactor for about 600 cellular enzymes. One third of ingested Mg2+ is absorbed from the gut through a saturable transcellular process and a concentration-dependent paracellular process. Absorbed Mg2+ is excreted by the kidney and maintains serum Mg2+ within a narrow range of 0.7–1.25 mmol/L. The reabsorption of Mg2+ by the nephron is characterized by paracellular transport in the proximal tubule and thick ascending limb. The nature of the transport pathways in the gut epithelia and thick ascending limb has emerged from an understanding of the molecular mechanisms responsible for rare monogenetic disorders presenting with clinical hypomagnesemia. These human disorders due to loss-of-function mutations, in concert with mouse models, have led to a deeper understanding of Mg2+ transport in the gut and renal tubule. This review focuses on the nature of the transporters and channels revealed by human and mouse genetics and how they are integrated into an understanding of human Mg2+ physiology.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Transplantation,Nephrology,Critical Care and Intensive Care Medicine,Epidemiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献