Proximal Tubular Secretory Clearance

Author:

Wang Ke,Kestenbaum Bryan

Abstract

The secretion of small molecules by the proximal tubules of the kidneys represents a vital homeostatic function for rapidly clearing endogenous solutes and medications from the circulation. After filtration at the glomerulus, renal blood flow is directed through a network of peritubular capillaries, where transporters of the proximal tubules actively secrete putative uremic toxins and hundreds of commonly prescribed drugs into the urine, including protein-bound substances that cannot readily cross the glomerular basement membrane. Despite its central physiologic importance, tubular secretory clearance is rarely measured or even estimated in clinical or research settings. Major barriers to estimating tubular solute clearance include uncertainty regarding optimal endogenous secretory markers and a lack of standardized laboratory assays. The creation of new methods to measure tubular secretion could catalyze advances in kidney disease research and clinical care. Differences in secretory clearance relative to the GFR could help distinguish among the causes of CKD, particularly for disorders that primarily affect the tubulointerstitium. As the primary mechanism by which the kidneys excrete medications, tubular secretory clearance offers promise for improving kidney medication dosing, which is currently exclusively on the basis of filtration. The differing metabolic profiles of retained solutes eliminated by secretion versus glomerular filtration suggest that secretory clearance could uniquely inform uremic toxicity, refine existing measures of residual kidney function, and improve prediction of cardiovascular and kidney disease outcomes. Interdisciplinary research across clinical, translational, and laboratory medicine is needed to bring this often neglected kidney function into the limelight.

Publisher

American Society of Nephrology (ASN)

Subject

Transplantation,Nephrology,Critical Care and Intensive Care Medicine,Epidemiology

Reference55 articles.

1. The anglerfish and uremic toxins

2. Smith HW : The Evolution of the Kidney, Lectures on the Kidney (Porter Lectures, Series 9), University Extension Division, Kansas City, KS, University of Kansas Press, 1941

3. McGuigan H : Experimental Pharamacology, Philadelphia, Lea & Febiger, 1919, p 183

4. The mechanism of the elimination of phenolsulphonephthalein by the kidney—a proof of secretion by the convoluted tubules;Marshall;Bull Johns Hopkins Hosp,1923

5. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN 1

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3