Abstract
The past few years have seen major advances in genome-wide association studies (GWAS) of CKD and kidney function–related traits in several areas: increases in sample size from >100,000 to >1 million, enabling the discovery of >250 associated genetic loci that are highly reproducible; the inclusion of participants not only of European but also of non-European ancestries; and the use of advanced computational methods to integrate additional genomic and other unbiased, high-dimensional data to characterize the underlying genetic architecture and prioritize potentially causal genes and variants. Together with other large-scale biobank and genetic association studies of complex traits, these GWAS of kidney function–related traits have also provided novel insight into the relationship of kidney function to other diseases with respect to their genetic associations, genetic correlation, and directional relationships. A number of studies also included functional experiments using model organisms or cell lines to validate prioritized potentially causal genes and/or variants. In this review article, we will summarize these recent GWAS of CKD and kidney function–related traits, explain approaches for downstream characterization of associated genetic loci and the value of such computational follow-up analyses, and discuss related challenges along with potential solutions to ultimately enable improved treatment and prevention of kidney diseases through genetics.
Publisher
American Society of Nephrology (ASN)
Subject
Transplantation,Nephrology,Critical Care and Intensive Care Medicine,Epidemiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献