Spectroscopic assessment and quantitative analysis of the trace element composition of vegetable additives to meat products

Author:

Palamarchuk Igor,Yuanxia FuORCID,Zhuravel Dmytro,Petrychenko Ievgenii,Blishch Roksolana,Holovatyuk Anatoliy,Domin Olexander,Kostiuk Tatiana

Abstract

In this scientific work, using the method of laser-induced breakdown spectroscopy (LIBS), the spectra of beef samples and impurities in meat products, namely, banana, pineapple, kiwi, bergamot, poria coconut, Chinese angelica, chicken blood vine, were measured by using developed experimental devices. The purpose of the research was to evaluate the qualitative characteristics of additives to meat semi-finished products for the potential formation of the desired properties of the products due to the analysis of the received spectrograms of trace elements of the samples when applying the LIBS method, quantitative analysis for processing the received information. The determined values of the electron temperature of the plasma, the electron density of the used raw material samples, and the assessment of the local heat balance were used as evaluation criteria. When processing the obtained data, the characteristics of the laser-induced plasma surface of the presented samples were analyzed; the electron temperature and electron density were determined, and a quantitative analysis of trace elements was carried out. LIBS technology allows rapid real-time monitoring and qualitative analysis of trace elements online and over long distances. During the research, it turned out that quantitative analysis requires further study and optimisation of experimental conditions, such as pre-treatment of samples. These conditions optimise defocusing, double laser pulse, and sample temperature, which increases the signal/noise ratio of all spectral lines. The combination of fluorescence spectroscopy and Raman technology enables higher detection sensitivity and better molecule control, creating a quantitative analysis method model that can reduce matrix effects and overcome the self-absorption effect. Among the difficulties of using LIBS technology, several elements can be noted online simultaneously, compared to Raman. The combination of spectroscopy and fluorescence spectroscopy can obtain more comprehensive information about the composition of materials, which can become a potential platform for monitoring trace elements in food products.

Publisher

HACCP Consulting

Reference45 articles.

1. Tkach, G., Omeliаn, A., Kushnir, Y., & Altanova, O. (2023). The effect of a diet based on semifinished products from plant and animal raw materials on reproductive capacity, growth, and development of the organism. In Animal Science and Food Technology (Vol. 14, Issue 4, pp. 87–98). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.4.2023.87

2. Balji, Y. (2023). Preliminary assessment of the safety of genetically modified food products. In Animal Science and Food Technology (Vol. 14, Issue 3, pp. 9–19). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.3.2023.9

3. Palamarchuk, I., Mushtruk, M., Sukhenko, V., Dudchenko, V., Korets, L., Litvinenko, A., Deviatko, O., Ulianko, S., & Slobodyanyuk, N. (2020). Modelling of the process of vybromechanical activation of plant raw material hydrolysis for pectin extraction. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 239–246). HACCP Consulting. https://doi.org/10.5219/1305

4. Palamarchuk, I., Zozulyak, O., Mushtruk, M., Petrychenko, I., Slobodyanyuk, N., Domin, О., Udodov, S., Semenova, O., Karpovych, I., & Blishch, R. (2022). The intensification of dehydration process of pectin-containing raw materials. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 16, pp. 15–26). HACCP Consulting. https://doi.org/10.5219/1711

5. Dias‐Faceto, L. S., Salvador, A., & Conti‐Silva, A. C. (2019). Acoustic settings combination as a sensory crispness indicator of dry crispy food. In Journal of Texture Studies (Vol. 51, Issue 2, pp. 232–241). Wiley. https://doi.org/10.1111/jtxs.1248

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3