Abstract
The physical essence of the formation and influence of bacteria on the surface of technological equipment in the dairy industry is considered as an essential factor leading to contamination of dairy products and is a major hygienic problem. The ability of microorganisms on the surfaces of technological equipment to form biofilm forms and requirements for steel grade, relief, and its roughness were analysed. The effect of surface roughness on promoting or preventing adhesion and reproduction of biofilm forms of bacteria, which reduce the efficiency of sanitary processing of dairy equipment and thereby increase the microbial contamination of dairy products with shortened shelf life, is substantiated. Research about the process of bacterial adhesion to the surface of metals with different roughness depending on the size and shape is presented. It is found that on the surface of stainless steel with roughness 2.687 ±0.014 micron film formation process in Escherichia coli and Staphylococcus aureus are similar from 3 to 24 hours and does not depend on the size of the bacteria, and accordingly allows us to argue that rod-shaped and coccid bacteria attach freely in the hollows of the roughness are the beginning of the process of the first stage of biofilm formation. It is found that on the surface of stainless steel with roughness 0.95 ±0.092 micron film formation process in S. aureus is more intense than in E. coli. Thus, within 3 hours of incubation, the density of biofilms formed S. aureus was 1.2 times bigger than biofilms E. coli, by the next 15 hours of incubation formed biofilms S. aureus were, on average, 1.3 times denser. It is established that S. aureus due to its spherical shape is able to fit in the hollows of the roughness 0.95 ±0.092 μm and faster to adhere to the surface at the same time. E. coli, due to its rod-like shape, with such surface roughness, can adhere to the cavities only over its entire length. It is proved that by surface roughness 0.63 ±0.087 μm film intensity S. aureus was, on average, 1.4 times faster than E. coli, for roughness 0.16 ±0.018 micron film formation process took place equally for S. aureus and E. coli, but biofilms were lower in density than those formed on roughness 0.63 ±0.087 micron. Studies suggest that the use of equipment in the dairy industry with a roughness of less than 0.5 microns will reduce the attachment of microorganisms to the surface and reduce the contamination of dairy products.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献