Formation of microbial biofilms on stainless steel with different surface roughness

Author:

Stadnyk IgorORCID,Sabadosh GannaORCID,Hushtan Tetiana,Yevchuk Yana

Abstract

The physical essence of the formation and influence of bacteria on the surface of technological equipment in the dairy industry is considered as an essential factor leading to contamination of dairy products and is a major hygienic problem. The ability of microorganisms on the surfaces of technological equipment to form biofilm forms and requirements for steel grade, relief, and its roughness were analysed. The effect of surface roughness on promoting or preventing adhesion and reproduction of biofilm forms of bacteria, which reduce the efficiency of sanitary processing of dairy equipment and thereby increase the microbial contamination of dairy products with shortened shelf life, is substantiated. Research about the process of bacterial adhesion to the surface of metals with different roughness depending on the size and shape is presented. It is found that on the surface of stainless steel with roughness 2.687 ±0.014 micron film formation process in Escherichia coli and Staphylococcus aureus are similar from 3 to 24 hours and does not depend on the size of the bacteria, and accordingly allows us to argue that rod-shaped and coccid bacteria attach freely in the hollows of the roughness are the beginning of the process of the first stage of biofilm formation. It is found that on the surface of stainless steel with roughness 0.95 ±0.092 micron film formation process in S. aureus is more intense than in E. coli. Thus, within 3 hours of incubation, the density of biofilms formed S. aureus was 1.2 times bigger than biofilms E. coli, by the next 15 hours of incubation formed biofilms S. aureus were, on average, 1.3 times denser. It is established that S. aureus due to its spherical shape is able to fit in the hollows of the roughness 0.95 ±0.092 μm and faster to adhere to the surface at the same time. E. coli, due to its rod-like shape, with such surface roughness, can adhere to the cavities only over its entire length. It is proved that by surface roughness 0.63 ±0.087 μm film intensity S. aureus was, on average, 1.4 times faster than E. coli, for roughness 0.16 ±0.018 micron film formation process took place equally for S. aureus and E. coli, but biofilms were lower in density than those formed on roughness 0.63 ±0.087 micron. Studies suggest that the use of equipment in the dairy industry with a roughness of less than 0.5 microns will reduce the attachment of microorganisms to the surface and reduce the contamination of dairy products.

Publisher

HACCP Consulting

Subject

Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SCREENING OF THE ABILITY OF MICROORGANISMS TO BIOFILM FORMATION;Ukrainian Journal of Laboratory Medicine;2024-04-02

2. Influence of roll crushing of plant material on the consumer characteristics of «Ukrainske» biscuits;Scientific journal of the Ternopil national technical university;2024

3. The role of substrates towards marine diatom Cylindrotheca fusiformis adhesion and biofilm development;Journal of Applied Phycology;2021-09-04

4. Methods of calculation of the power for dough kneading with the use of blade-free working part;Scientific journal of the Ternopil national technical university;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3