Smart Heating, Ventilating, Air-conditioning and Refrigeration by Web-based Geographic Information System

Author:

Asli Kian Hariri, ,Asli Kaveh Hariri,

Abstract

Objective: Heating, ventilating, air-conditioning and refrigeration (HVAC&R) systems currently account for a significant portion of energy consumption. The HVAC&R system contributes the largest energy consumption in a building, so it is essential to optimize energy consumption to improve energy saving worldwide. Methods: The web-based geographic information system (GIS) enables the seamless sharing of spatial data across the globe, accessible anytime and anywhere via the World Wide Web. The set of remote reading networked sensors, advanced modems, and data loggers facilitate the intercommunication for the geodatabase of HVAC&R’s facilities. The integration of remote sensing technology and the Internet of Things, grounded in GIS establishes a control loop dedicated to energy conservation. This method is a pioneering concept in control science, offering significant potential for enhancing design, maintenance, and energy management practices. It empowers energy users with real-time control over their energy consumption, making a substantial advancement in this field. Results: In this work, the model of HVAC&R control in context with web-based GIS showed that the regression mathematical analysis in compliance with the computational method holds the capacity to predict energy consumption and evaluate energy loss. Conclusion: In regression analysis, the P was found to be 0.991 for the percentage of dissatisfaction, 0.977 for energy use intensity, and 0.962 for data envelopment analysis efficiency. Additionally, the curve estimation showed that the power function was utilized in regression analysis processes.

Publisher

Innovation Forever Publishing Group Limited

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing (RS) and Domestic Consumption Improvers Equipment;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

2. Optimization of Fixtures Unit Consumption by Intelligent Data Monitoring Method;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

3. Advanced Technologies and Forecasting Models for Water Demand;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

4. Computational Modeling and Regression Analysis for Water Consumption Management;Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

5. Implementation Water Loss by Smart Control Through the Internet of Things (IoT);Synthesis Lectures on Emerging Engineering Technologies;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3