Author:
Belattar M'barek,Hadfi Abdallah,Ben Aazza Said,Mohareb Said,Hafid Naima,Driouiche Ali
Abstract
The formation of scale on surfaces in contact with water is due to many reasons as the hardness of water and its temperature. Therefore, this phenomenon of scale in water pipelines is a common and inevitable problem in the regions that exploit or use groundwater with high rigidity. The circuits fed by hot water are easily reached by hard water scaling. The deposition of encrusting curst at the level of walls in touch with water is due to many technical, economic and environmental problems. It causes a reduction in water flow and a decrease in the efficiency of heating systems.In this study, we are particularly interested in studying the phenomenon of hard water scaling caused by sanitary hot water in a tourist unit situated in the north of the seaside in the city of Agadir. First, we have evaluated the physico-chemical quality of water in use in this tourist unit. Secondly, we conducted a qualitative and quantitative analysis of the scale found in the circuits that transport sanitary hot water. Several analytical techniques were used to reach this goal namely: X-ray fluorescence (XRF) which shows that 85.50% of scale is represented by Calcium Carbonate. Whereas infrared spectrometry (IR) demonstrates the existence of the Carbonate anion CO32-. In addition, due to thermogravimetric analysis (TGA) and differential thermal analysis (DTA) we found that the endothermic event shows the decomposition of Calcium Carbonate of CaO and CO2 in the temperature range of 660 C° to 820 C°. For scanning electron microscopy (SEM), it indicates that the scale takes the form of needle-like aragonite crystals. At last, the X-ray diffraction (XRD) shows that the scale is composed essentially of Calcium Carbonate of the type aragonite.The results of the different techniques of characterisation are in concordance in the scaling of the circuits of sanitary hot water in the tourist unit under study.
Publisher
Mediterranean Journal of Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献