Elimination of Terbinafine Hydrochloride Antifungal Drug Traces from Water, Pharmaceutical Formulations and Blood Plasma using Low-Cost Bio and Synthetic Sorbents

Author:

Ali Samah,Alharbi Bushra,Mohamed Amr

Abstract

<p>:<strong> </strong>Chitosan (CS) biosorbent and polyurethane foam (PUF) synthetic sorbent have been utilized to eliminate terbinafine hydrochloride (TRB HCl) antifungal drug in its pure and pharmaceutical forms from both contaminated aqueous and biological media using a batch process. The experimental conditions for efficient removal of TRB HCl for both CS and PUF were optimized depending on various experimental parameters such as the pH of the solution, contact periods, initial TRB HCl concentration, and sorbents dosage in the solution.</p><p>SEM, FT-IR, and XRD characterizations were carried out to study the adsorption of a drug by both sorbents. The optimum conditions for removing TRB HCl by CS and PUF were achieved at a pH of 8.5 and a contact time of 60 min at 250 rpm, using 0.4 g for both sorbents. The measured spectrophotometric absorbance at λ<sub>max</sub> of TRB HCl was 242 nm. In addition, the zero-point charge (pHpzc) was determined for the studied sorbents. The pHpzc of the surface of sorbents has shown that electrostatic attraction is one of the mechanisms in TRB HCl sorption. The adsorption process was modeled using the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion kinetic models. The results indicated that the adsorption of TRB HCl on CS and PUF does follow a pseudo-first-order type of reaction kinetics. The adsorption process was modeled using Langmuir and Freundlich isotherms. The adsorption data found that the Freundlich isotherm model was more suitable for the PUF sorbent, while the Langmuir isotherm model better fit the CS biosorbent.</p><p>Evaluation of the experimental data using the Langmuir equation revealed that the maximum adsorption capacities of PUF and CS were 2.807 and 1.2297 mg. g<sup>-1</sup>, respectively. The solution was also used to estimate TRB HCl in its pharmaceutical form, and the assessed recoveries were 97.25 and 98.437% for CS and PUF, respectively. The proposed procedure was validated for other complex mediums by removing TRB HCl from spiked human blood plasma.<em> In-silico</em> aquatic toxicity forecast of TRB HCl was also carried out.</p>

Publisher

Mediterranean Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3