The flavonoid fisetin ameliorates renal fibrosis by inhibiting SMAD3 phosphorylation, oxidative damage, and inflammation in ureteral obstructed kidney in mice

Author:

Ju Ha YoungORCID,Kim JongwanORCID,Han Sang JunORCID

Abstract

Background: Renal fibrosis is characterized by the accumulation of extracellular matrix and inflammatory cells and kidney dysfunction, which is a major pathway in the progression of chronic kidney disease (CKD). Accumulating evidence indicates that oxidative stress plays a critical role in the initiation and progression of CKD via proinflammatory and profibrotic signaling pathways. Fisetin (3,3′,4′,7-tetrahydroxyflavone) has biological activities including antioxidant, anti-inflammatory, and anti-aging effects. Therefore, we evaluated the antifibrotic effects of fisetin on unilateral ureteral obstruction (UUO)-induced kidneys.Methods: C57BL/6 female mice were subjected to right UUO and intraperitoneally injected every other day with fisetin (25 mg/kg/day) or vehicle from 1 hour before surgery to 7 days after surgery. Kidney samples were analyzed for renal fibrosis (α-smooth muscle actin [α-SMA] expression, collagen deposition, and transforming growth factor [TGF] β1/SMAD3 signaling pathway), oxidative damage (4-HNE and 8-OHdG expression), inflammation (proinflammatory cytokine/chemokine, macrophage, and neutrophil infiltration), and apoptosis (TUNEL staining). Cultured human proximal tubule cells were treated with fisetin before TGF-β to confirm the TGF-β downstream pathway (SMAD2/3 phosphorylation).Result: We found that fisetin treatment protected against renal fibrosis by inhibiting the phosphorylation of SMAD3, oxidative damage, inflammation, apoptotic cell death, and accumulation of profibrotic M2 macrophages in the obstructed kidneys. In cultured human proximal tubular cells, fisetin treatment inhibited TGF-β1–induced phosphorylation of SMAD3 and SMAD2.Conclusion: Fisetin alleviates kidney fibrosis to protect against UUO-induced renal fibrosis, and could be a novel therapeutic drug for obstructive nephropathy.

Funder

Research Grant of Pukyong National University

Publisher

The Korean Society of Nephrology

Subject

Urology,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3