Upregulation of NADH/NADPH oxidase 4 by angiotensin II induces podocyte apoptosis

Author:

Ha Tae-SunORCID,Seong Su-BinORCID,Ha Dong-SooORCID,Kim Seung JungORCID

Abstract

Background: Angiotensin II induces glomerular and podocyte injury via systemic and local vasoconstrictive or non-hemodynamic effects including oxidative stress. The release of reactive oxygen species (ROS) from podocytes may participate in the development of glomerular injury and proteinuria. We studied the role of oxidative stress in angiotensin II-induced podocyte apoptosis.Methods: Mouse podocytes were incubated in media containing various concentrations of angiotensin II at different incubation times and were transfected with NADH/NADPH oxidase 4 (Nox4) or angiotensin II type 1 receptor for 24 hours. The changes in intracellular and mitochondrial ROS production and podocyte apoptosis were measured according to the presence of angiotensin II.Results: Angiotensin II increased the generation of mitochondrial superoxide anions and ROS levels but suppressed superoxide dismutase activity in a dose- and time-dependent manner that was reversed by probucol, an antioxidant. Angiotensin II increased Nox4 protein and expression by a transcriptional mechanism that was also reversed by probucol. In addition, the suppression of Nox4 by small interfering RNA (siRNA) reduced the oxidative stress induced by angiotensin II. Angiotensin II treatment also upregulated AT1R protein. Furthermore, angiotensin II promoted podocyte apoptosis, which was reduced significantly by probucol and Nox4 siRNA and also recovered by angiotensin II type 1 receptor siRNA.Conclusion: Our findings suggest that angiotensin II increases the generation of mitochondrial superoxide anions and ROS levels via the upregulation of Nox4 and angiotensin II type 1 receptor. This can be prevented by Nox4 inhibition and/or antagonizing angiotensin II type 1 receptor as well as use of antioxidants.

Funder

National Research Foundation of Korea

Publisher

The Korean Society of Nephrology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3