Energy deficit in surgery on the examples of cholestasis and massive liver resection

Author:

Galperin E. I.1ORCID

Affiliation:

1. Department of Hospital Surgery, Sklifosovsky Institute for Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation; S.P. Botkin City Clinical Hospital

Abstract

The paper is dedicated to the energy processes associated with diseases in living organisms. Experiments involved 151 rats. Liver tissue was taken to determine its energy state in cholestasis (common bile duct ligation) and after resection of 60% and 80% of the parenchyma (without cholestasis). Adenine nucleotides (ATP, ADP, and AMP) and activity of gluconeogenesis enzymes were studied in cholestasis every 3 days for 15 days and after liver resection – every 6 hours for 3 days. Particular attention was paid to the energy deficit in liver tissue. A certain level of energy deficit n agent of metabolic stress. The experiments revealed that the energy deficit in the liver tissue increased by 15% by day 6 of cholestasis and by 48–50% of the initial energy level by days 12–15. The increase in energy deficit in liver tissue inversely correlated with the decrease in the activity of gluconeogenesis enzymes – by day 15 glucose-6- phosphate dehydrogenase reduced by 44% and isocitrate dehydrogenase – by 48% of the initial energy level. Decompression after 15 days from the onset of cholestasis was followed by an increase in energy deficit by 15%, as compared to the initial energy level, within 3–5 days. No development of metabolic stress was evidenced by a decrease in the activity of gluconeogenesis enzymes. After 12 hours after resection of 60% and 80% of the liver parenchyma, the liver energy deficit in both groups accounted for 50% of the initial energy level. After resection of 60% of the liver parenchyma, the energy deficit decreased rapidly: after 24 hours to 30%, after 72 hours to 11%; 2 rats out of 30 died during this period. After 12 hours after resection of 80% of the liver parenchyma, the energy deficit rose sharply: after 24 hours to 70% of the initial energy level. This led to the death of 26 animals out of 31. Both groups of animals demonstrated an inverse relationship between the decreased amount of energy used for hepatocyte function and the increased activity of key enzymes of gluconeogenesis. The obtained results suggest that in both groups of animals, metabolic stress developed after liver resection, however, after resection of 80% of the organ parenchyma, it “choked” due to the deficit of remnant hepatocytes. Most of the energy was spent for the development of regeneration. Metabolic stress and regeneration develop simultaneously. A deficit of 50% of energy in liver tissue with a further increase may indicate a critical condition, both in cholestasis and after a massive resection. The research into energy changes in cholestasis and after massive liver resections reveals new patterns of internal processes of the body.

Publisher

Annals of Surgical Hepatology

Subject

Gastroenterology,Hepatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3