An Intelligent Process Fault Diagnosis System based on Andrews Plot and Convolutional Neural Network

Author:

Wang ShengkaiORCID,Zhang JieORCID

Abstract

This paper proposes an intelligent process fault diagnosis system based on the techniques of Andrews plot and convolutional neural network. The proposed fault diagnosis method extracts features from the on-line process measurements using Andrews function. To address the uncertainty of setting the proper dimension of extracted features in Andrews function, a convolutional neural network is used to further extract diagnostic information from the Andrews function outputs. The outputs of the convolutional neural network are then fed to a single hidden layer neural network to obtain the final fault diagnosis result. The proposed fault diagnosis system is compared with a conventional neural network based fault diagnosis system. Applications to a simulated CSTR process show that the proposed fault diagnosis system gives much better performance than the conventional neural network based fault diagnosis system. It reveals that the use of Andrews function and convolutional neural network can improve the diagnosis performance.

Publisher

Intelligence Science and Technology Press Inc.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3