Does a preterm labor-assessment algorithm improve preterm labor-related knowledge, clinical practice confidence, and educational satisfaction?: a quasi-experimental study

Author:

Choi Hee-YoungORCID,Kim Jeung-ImORCID

Abstract

Purpose: Preterm birth is increasing, and obstetric nurses should have the competency to provide timely care. Therefore, training is necessary in the maternal nursing practicum. This study aimed to investigate the effects of practice education using a preterm-labor assessment algorithm on preterm labor-related knowledge and clinical practice confidence in senior nursing students. Methods: A pre-post quasi-experimental design with three groups was used for 61 students. The preterm-labor assessment algorithm was modified into three modules from the preterm-labor assessment algorithm by March of Dimes. We evaluated preterm labor-related knowledge, clinical practice confidence, and educational satisfaction. Data were analyzed with the paired t-test and repeated-measures analysis of variance. Results: The practice education using a preterm-labor assessment algorithm significantly improved both preterm labor-related knowledge and clinical practice confidence (paired t=–7.17, p<.001; paired t=–5.51, p<.001, respectively). The effects of the practice education using a preterm-labor assessment algorithm on knowledge lasted until 8 weeks but decreased significantly at 11 and 13 weeks after the program, while the clinical practice confidence significantly decreased at 8 weeks post-program. Conclusion: The practice education using a preterm-labor assessment algorithm was effective in improving preterm labor-related knowledge and clinical practice confidence. The findings suggest that follow-up education should be conducted at 8 weeks, or as soon as possible thereafter, to maintain knowledge and clinical confidence, and the effects should be evaluated.

Funder

National Research Foundation of Korea

Soonchunhyang University

Publisher

Korean Society of Women Health Nursing

Subject

Advanced and Specialized Nursing,Maternity and Midwifery,Medicine (miscellaneous),Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3