Tracking via Geotagged Social Media Data

Author:

Hardy Anne1ORCID

Affiliation:

1. University of Tasmania

Abstract

Over the past twenty years, social media has changed the ways in which we plan, travel and reflect on our travels. Tourists use social media while travelling to stay in touch with friends and family, enhance their social status (Guo et al., 2015); and assist others with decision making (Xiang and Gretzel, 2010; Yoo and Gretzel, 2010). They also use it to report back to their friends and family where they are. This can be done using a geotag function that provides a location for where a post is made. While little is known about why tourists choose to geotag their social media posts, Chung and Lee (2016) suggest that geotags may be used in an altruistic manner by tourists, in order to provide information, and because they elicit a sense of anticipated reward. What is known, however, is that the function offers researchers the ability to understand where tourists travel. There are two types of geotagged social media data. The first of these is discussed in this chapter and may be defined as single point geo-referenced data – geotagged social media posts whose release is chosen by the user. This includes data gathered from social media apps such as Facebook, Instagram, Twitter and WeiChat. The method of obtaining this data involves the collation of large numbers of discrete geotagged updates or photographs. Data can be collated via an application programming interface (API) provided by the app developer to researchers, by automated data scraping via computer programs, perhaps written in Python, or manually by researchers. The second type of data is continuous location-based data from applications that are designed to track movement constantly, such as Strava or MyFitnessPal. Tracking methods using this continuous location-based data are discussed in detail in the following chapter.

Publisher

Goodfellow Publishers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3