Affiliation:
1. Department of Structural Engineering, University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy;
Abstract
The design criteria for a new, low-cost base dissipation technique for simple masonry buildings are presented together with the results of some numerical analyses. The proposed apparatus, termed the “reinforced cut wall” (RCW), is made up of a layer of weak mortar (50 mm) and a 4- mm-thick elastomer membrane sheath laid between the foundation and base of the wall, which is further reinforced by a series of vertical steel rods (8–12 mm in diameter) connecting it to the foundation. Experimental trials have been performed on a sample set of dissipators in order to establish their mechanical properties and define suitable assembly techniques. Numerical simulations, consisting of incremental nonlinear static analyses, of several types of masonry buildings highlight the system's efficient performance in terms of force-displacement law. For moderate horizontal actions, the RCW does not cause relevant foundation-base displacement. However, when a prescribed force limit is exceeded, friction behavior of the weak layers of the RCW permit inelastic deformation along both horizontal directions, while the vertical steel rods ensure an elastic restoring force for rocking movements as well. Furthermore, the RCW provides the added benefit of isolating the structure from ground humidity.
Subject
Geophysics,Geotechnical Engineering and Engineering Geology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献