Viscoelastic Mechanical Damping Devices Tested at Real Earthquake Displacements

Author:

Bergman David M.1,Hanson Robert D.2

Affiliation:

1. EQE International, Inc., San Francisco, California

2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor

Abstract

Experimental steady-state hysteretic characteristics of ten direct shear seismic damping devices (DSSDs) are presented. The devices were tested over a range of frequencies and displacements chosen as representative of building responses during moderate to severe level earthquakes. Three different damping materials, produced by 3M Corporation and Lord Corporation, were used in the devices. Excitation frequency, strain amplitude, damping material initial temperature, temperature change over the test duration, cyclic energy dissipation, and damping material moduli (including complex shear, storage and loss moduli) are reported for all tests performed. The influence of frequency, displacement amplitude, temperature, and cumulative energy absorption on the damping material mechanical properties and hysteretic stability are examined. Methods by which material moduli can be used to design damping devices for specified spring stiffness and equivalent viscous damping are presented. Limitations of the hysteresis model, test results, and design methodology are discussed.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3