A New Method for the Realistic Estimation of Seismic Ground Motion in Megacities: The Case of Rome

Author:

Fäh Donat12,Iodice Claudio1,Suhadolc Peter1,Panza Guilano F.13

Affiliation:

1. Istituto di Geodesia e Geofisica, Via dell' Università 7, Università degli Studi, I-34100 Trieste

2. Institut für Geophysik, ETH Hönggerberg, CH-8093 Zürich

3. International Center for Theoretical Physics, Strada Costiera 11, I-34100 Trieste

Abstract

A hybrid technique, based on mode summation and finite differences, is used to simulate the ground motion induced in the city of Rome by the January 13, 1915, Fucino (Italy) earthquake (ML=6.8). The technique allows us to take into consideration source, path, and local soil effects. The results of the numerical simulations are used for a comparison between the observed distribution of damage in Rome, and the computed peak ground acceleration, the maximum response of simple oscillators, and the so-called “total energy of ground motion”. The total energy of ground motion is in good agreement with the observed distribution of damage. From the computation of spectral ratios, it has been recognized that the presence of a near-surface layer of rigid material is not sufficient to classify a location as a “hard-rock site” when the rigid material has a sedimentary complex below it. This is because the underlying sedimentary complex causes amplifications due to resonances. Within sedimentary basins, incident energy in certain frequency bands can also be shifted from the vertical, into the radial component of motion. This phenomenon is very localized, both in frequency and space, and closely neighboring sites can be characterized by large differences in the seismic response.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3