The 1906 San Francisco Earthquake and Fire—Enduring Lessons for Fire Protection and Water Supply

Author:

Scawthorn C.1,O'Rourke T. D.2,Blackburn F. T.3

Affiliation:

1. Professor, Department of Urban Management, Kyoto University, Kyoto 606-8501 Japan

2. Professor, School of Civil & Environmental Engineering, Cornell University, Ithaca, NY 14853

3. San Francisco Fire Department (ret.), current residence: Bad Wildbad 75323 Germany

Abstract

Prior to 18 April 1906 the San Francisco Fire Department and knowledgeable persons in the insurance industry regarded a conflagration in San Francisco as inevitable. The 1906 San Francisco earthquake and ensuing fire is the greatest single fire loss in U.S. history, with 492 city blocks destroyed and life loss now estimated at more than 3,000. This paper describes fire protection practices in the United States prior to 1906; the conditions in San Francisco on the eve of the disaster; ignitions, spread, and convergence of fires that generated the 1906 conflagration; and damage to the water supply system in 1906 that gave impetus to construction of the largest high-pressure water distribution network ever built—San Francisco's Auxiliary Water Supply System (AWSS). In the 1980s hydraulic network and fire simulation modeling identified weaknesses in the fire protection of San Francisco—problems mitigated by an innovative Portable Water Supply System (PWSS), which transports water long distances and helped extinguish the Marina fire during the 1989 Loma Prieta earthquake. The AWSS and PWSS concepts have been extended to other communities and provide many lessons, paramount of which is that communities need to develop an integrated disaster preparedness and response capability and be constantly vigilant in maintaining that capability. This lesson is especially relevant to highly seismic regions with large wood building inventories such as the western United States and Japan, which are at great risk of conflagration following an earthquake.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3