Affiliation:
1. Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran;
Abstract
The use of supplemental viscous damping significantly improves the seismic performance of buildings; however, a design procedure that considers seismic risk is necessary. The aim of this article is to simplify the seismic risk assessment of mid-rise steel frames with linear viscous fluid dampers by employing probabilistic models and a reliability analysis. The development of a probabilistic seismic response model (PSRM) to predict the structural response without performing extensive computation is a principal component of this methodology. The design and modeling of generic frames, record selection, cloud analysis, assessment of candidate intensity measures, and use of vector-valued intensity measures are the primary aspects of this study, the goal of which is to put forward a PSRM for the target frames. Comparison of the PSRM outcome with the results of case studies demonstrates the acceptable accuracy of the models for the design earthquake; these models lead to a reduction in the computation and complexity involved in selecting design variables to achieve a target risk.
Subject
Geophysics,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献