Nonlinear Seismic Soil-Pile Structure Interaction

Author:

Wang Shaomin1,Kutter Bruce L.1,Chacko M. Jacob1,Wilson Daniel W.1,Boulanger Ross W.1,Abghari Abbas2

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Davis, CA 95616

2. Office of Structural Foundations, California Department of Transportation, Sacramento, CA 94273-0001

Abstract

Analytical design tools for evaluation of soil-pile-structure interaction during seismic events are evaluated and modified. Several implementations of the “Beam on Nonlinear Winkler Foundation” (BNWF) method were used to predict results of centrifuge model tests of single piles in a soft clay soil profile. This paper shows that calculations from these computer codes can be sensitive to the details of the arrangement of nonlinear springs and linear viscous dashpots. Placing the linear viscous dashpots (representing radiation damping in the far field) in series with the hysteretic component of the p-y elements (representing the nonlinear soil-pile response in the near field) is shown to be technically preferable to a parallel arrangement of the viscous and hysteretic damping components. Preliminary centrifuge data is reasonably modeled by the numerical calculations using this implementation of damping, but additional field or physical model data are needed to fully evaluate the reliability of BNWF procedures.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3