Apparent Wave Velocity and Site Amplification at the California Strong Motion Instrumentation Program Carquinez Bridge Geotechnical Arrays during the 2014 M6.0 South Napa Earthquake

Author:

Kishida Tadahiro1,Haddadi Hamid2,Darragh Robert B.3,Kayen Robert E.4,Silva Walter J.3,Bozorgnia Yousef5

Affiliation:

1. Khalifa University of Science and Technology, Abu Dhabi, UAE (Formerly: Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA 94720)

2. California Strong Motion Instrumentation Program, California Geological Survey, Sacramento, CA 95814

3. Pacific Engineering and Analysis, El Cerrito, CA 94530

4. U.S. Geological Survey, Menlo Park, CA 94025, and UCLA, Los Angeles, CA 90095

5. Department of Civil and Environmental Engineering, University of California, Los Angeles (UCLA)

Abstract

The Carquinez Bridge geotechnical arrays are operated by the California Strong Motion Instrumentation Program (CSMIP) and recorded a peak ground acceleration (PGA) of approximately 1.0g at ground surface during the 2014 South Napa earthquake. The recorded PGA was significantly larger than those at the nearby surface sites. This study considers surface and downhole recordings from the additional 28 earthquakes recorded at the same arrays to understand the effects of wave propagation and site response at these arrays. Several site response analyses are performed to understand soil nonlinearity using the observed ground accelerations during the 2014 South Napa sequence. Apparent shear wave velocities are calculated from downhole records, which show clear reduction as ground motion intensity increases. Empirical transfer functions (EFTs) are also calculated in which the resonance frequencies became lower during strong shaking during the 2014 South Napa main shock. The in-situ critical damping ratio appears to be frequency dependent in the soft clay deposits. Lower damping at frequencies greater than about 5 Hz may have contributed to the observed PGA at Array #1 during the main shock.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3