Consequences of Modeling Choices in Seismic Performance Assessment of Buildings

Author:

Swensen Daniel J.1,Kunnath Sashi K.2

Affiliation:

1. Strong Motion Instrumentation Program, California Geological Survey, Sacramento, CA 95814

2. Civil & Environmental Engineering, University of California, Davis, CA 95616

Abstract

Performance-based approaches utilizing nonlinear analyses have become increasingly popular for seismic evaluation of buildings. Nonlinear simulations of building response require various assumptions and modeling decisions—from choice of software to model parameters—which opens the door to differences in demand assessments from what essentially could be very similar computational models. This study examines nonlinear response sensitivity of three steel moment frame structures to variations in basic nonlinear modeling parameters using three different software platforms: OpenSees, Perform-3D, and SAP2000. The building models were analyzed in the inelastic range using a suite of near-fault and far-fault ground motions, and response sensitivity was assessed using interstory drift and plastic rotation demands. Findings from the study indicate that sensitivity to modeling assumptions and choice of software are more pronounced at the local/element level than at the global/system level and can have an impact in performance-based seismic assessment.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Reference23 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3