Epistemic Uncertainties in Component Fragility Functions

Author:

Bradley Brendon A.1

Affiliation:

1. Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch, NZ

Abstract

This paper is concerned with the inclusion of epistemic uncertainties in component fragility functions used in performance-based earthquake engineering. Conventionally fragility functions, defining the probability of incurring at least a specified level of damage for a given level of seismic demand, are defined by a mean and standard deviation and assumed to have a lognormal distribution. However, there exist many uncertainties in the development of such fragility functions. The sources of epistemic uncertainty in fragility functions, their consideration, combination, and propagation are presented and discussed. Two empirical fragility functions presented in literature are used to illustrate the epistemic uncertainty in the fragility function parameters due to the finite size of the datasets. These examples and the associated discussions illustrate that the magnitude of epistemic uncertainties are significant and there are clear benefits of the consideration of epistemic uncertainties pertaining to the documentation, quality assurance, implementation, and updating of fragility functions. Epistemic uncertainties should therefore always be addressed in future fragility functions developed for use in seismic performance assessment.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3