Affiliation:
1. Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700
Abstract
Fragility functions are developed to predict the method of repair required for modern reinforced-concrete beam-column building joints subjected to earthquake loading. These fragility functions, in combination with similar fragility functions developed previously for older joints, are used to compare damage progression in older versus modern joints. To develop fragility functions for modern joints, the results of previous experimental investigations are used to generate empirical relationships between damage and earthquake demand, damage states are linked deterministically with commonly employed methods of repair, and the empirical data are modeled using a standard probability distribution. The demand parameters, damage states, methods of repair, and probability distribution used in the current study are chosen to facilitate comparison with results from the previous study. The results of this study are a family of fragility functions that can be used to predict the method of repair required for a modern joint damaged due to earthquake loading and an improved understanding of the relative vulnerability of older versus modern components.
Subject
Geophysics,Geotechnical Engineering and Engineering Geology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献