Analysis and Demonstrative Application of a Base Isolation/Supplemental Damping Technology

Author:

Sorace Stefano1,Terenzi Gloria2

Affiliation:

1. Dept. of Civil Engineering and Architecture, University of Udine, Via delle Scienze 208, 33100 Udine, Italy.

2. Dept. of Civil and Environmental Engineering, University of Florence, Via S. Marta 3, 50139 Florence, Italy.

Abstract

As a concluding step of several studies on a special base isolation/supplemental damping system, where pressurized fluid viscous spring-dampers are coupled to steel-Teflon sliders, the system was applied for the first time to a demonstrative strategic building in Italy. A final experimental campaign was developed to assess the interference of the dissipative actions of the two component devices. The campaign confirmed the linear additive combination implicitly assumed in relevant numerical models. The design and performance evaluation analyses performed on the building showed that maximum base displacements were only just below 45 mm, for the basic design earthquake level. As a result, very simple joints for all the facilities were used. For the same earthquake level, reduction factors of 2.48 and 2.12 on the superstructure response accelerations were obtained for the two main directions in plan as compared to peak ground acceleration. Low base displacement values, and a totally elastic superstructure response also emerged for the maximum earthquake level considered, as well as for the most demanding Italian historical near-fault ground motions introduced as inputs in the final verification analyses. The cost of the building structure resulted to be around 10% lower than the cost of a fixed-base traditional design, as well as of a base isolated structure incorporating high damping rubber bearings.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3