First-Level Pre-earthquake Assessment of Buildings Using Fuzzy Logic

Author:

Demartinos Konstantinos1,Dritsos Stephanos2

Affiliation:

1. Civil Engineer, Department of Civil Engineering, University of Patras, Patras, Greece

2. Associate Professor, Department of Civil Engineering, University of Patras, 26500, Patras, Greece;

Abstract

This paper discusses the performance of a fuzzy logic–based rapid visual screening procedure that results in the categorization of buildings into five different types of possible damage with respect to the potential occurrence of a major seismic event. In order to provide results representing expected damage, adaptive neural networks were used to train the method according to information obtained from the vulnerability of 102 buildings stricken by the Athens earthquake of 1999. The precision of the method was thereby enhanced, implying an improvement in efficiency and presenting remarkable advantages when compared to probabilistic approaches to rapid visual screening. Due to the small size of the database used for the training procedure, however, the prospects of the method remain to be discussed. Nonetheless, by using information from larger databases, the method has the potential for self-improvement, a fact that underlines a good prospect for the formation of reliable and robust pre-earthquake assessment methods.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3