Author:
Al-Hyari Abeer,Areibi Shawki
Abstract
This paper proposes a framework for design space exploration ofConvolutional Neural Networks (CNNs) using Genetic Algorithms(GAs). CNNs have many hyperparameters that need to be tunedcarefully in order to achieve favorable results when used for imageclassification tasks or similar vision applications. Genetic Algorithmsare adopted to efficiently traverse the huge search spaceof CNNs hyperparameters, and generate the best architecture thatfits the given task. Some of the hyperparameters that were testedinclude the number of convolutional and fully connected layers, thenumber of filters for each convolutional layer, and the number ofnodes in the fully connected layers. The proposed approach wastested using MNIST dataset for handwritten digit classification andresults obtained indicate that the proposed approach is able to generatea CNN architecture with validation accuracy up to 96.66% onaverage.
Subject
Industrial and Manufacturing Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献