Determining and Comparing Multivariate Distributions: An Application to AORD and GSPC with their related financial markets

Author:

Chandrasekara N.V.,Mammadov Musa,Tilakaratne Chandima D.

Abstract

AbstractMany real world applications are associated with more than one variable and hence, identifying multivariate distributions associated with real world problems portrays great importance today. Many studies can be found in the literature in this aspect and most of them are associated with two variables/dimensions and the maximum dimension of multivariate distribution found in the literature is four. Different optimization techniques have been used by researchers to find multivariate distributions in their studies. Numerical methods can be identified as more preferable than analytical methods when the dimension of the problem is high. The main objective of this study is to identify the multivariate distribution associated with the return series of Australian all ordinary index (AORD) and those of the related financial markets and compare it with the multivariate distribution of return series of the US GSPC index and its related financial markets. No research were found in the literature which were aimed at finding aforesaid multivariate distribution and comparisons. Moreover no evidence found for identifying a multivariate distribution with six dimensions. Five financial markets: Amex oil index, Amex gold index, world cocoa index, exchange rate of Australian dollar to United States dollar and US GSPC index were found to be associated with AORD. Hence the attempt was to derive the multivariate distribution of return series of AORD and these five return series and therefore the optimization problem of the study is a six dimension problem which associated with forty three parameters need to be estimated. A local optimization technique and a global optimization technique were used to estimate the parameters of the multivariate distribution. Results exhibit that the parameter estimates obtained from the global optimization technique are better than the parameter estimates obtained from the local optimization technique. The multivariate distribution of return series of AORD and related financial markets is central, less peaked and have fat tails. A comparison was done with another multivariate distribution of a return series of a leading stock market index: GSPC and return series of its associated financial markets and found that both distributions are alike in shape. Two periods were identified in the AORD series and found that the shape of the multivariate distribution of one period is similar to the shape of the multivariate distribution of full data set while the shape of the multivariate distribution of the other period is dissimilar to that of full data set.

Publisher

Global Science and Technology Forum

Subject

General Medicine

Reference27 articles.

1. L. Jacek, M. Justyna and K. Kamil. “Modeling stock market indexeswith copula functions”, e-Finanse: Financial Internet Quarterly, 7, (2),2011. pp. 1–16.

2. W. Hu, and A. N. Kercheval, “The skewed t distribution forportfolio credit risk”. Journal of Economic Literature.

3. M. Mahfoud, and M. MassMann. “Bivariate Archimedean copulas: anapplication to two stock market indices”. Vrije Universiteit Amsterdam, BMI Paper. 2012.

4. B. Reinaldo, A. Valle, andM. G. Genton. “Multivariate extended skew-t distributions and related families”. International journal of statistics. 67(3). 2010. pp 201–234.

5. S. Guan. “Copula Dependence Structure on Stock Market with Application to Risk”. Masters Thesis, Goteborg University, Sweeden.2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3