Detecting mammographically-occult cancer in women with dense breasts using deep convolutional neural network and Radon cumulative distribution transform

Author:

Lee Juhun,Nishikawa Robert M.

Publisher

SPIE

Reference12 articles.

1. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.;Saslow;CA: A Cancer Journal For Clinicians,2007

2. Screening for Breast Cancer

3. Model of Cost-Effectiveness of MRI for Women of Average Lifetime Risk of Breast Cancer;Kimball,2015

4. The Radon Cumulative Distribution Transform and Its Application to Image Classification

5. Detecting mammographically-occult cancer in women with dense breasts using Radon Cumulative Distribution Transform: a preliminary analysis;Lee,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of benign and malignant tumors in Digital Breast Tomosynthesis images using Radiomic-based methods;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

2. Impact of GAN artifacts for simulating mammograms on identifying mammographically occult cancer;Journal of Medical Imaging;2023-10-12

3. Pix2Pix Generative adversarial Networks (GAN) for breast cancer detection;2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT);2022-11-26

4. Analyzing GAN artifacts for simulating mammograms: application towards finding mammographically-occult cancer;Medical Imaging 2022: Computer-Aided Diagnosis;2022-04-04

5. Identifying Women With Mammographically- Occult Breast Cancer Leveraging GAN-Simulated Mammograms;IEEE Transactions on Medical Imaging;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3