Deep learning approach for UAV-based weed detection in horticulture using edge processing

Author:

Harders Leif Ole,Czymmek Vitali,Hussmann Stephan,Wrede Andreas,Ufer Thorsten

Publisher

SPIE

Reference35 articles.

1. Ministry of Energy, Agriculture, the Environment, Nature and Digitalization, “Agricultural report of the federal state schleswig-holstein.” https://www.schleswig-holstein.de/DE/Landesregierung/Themen/Landwirtschaft/Agrarstatistik/agrarstatistik_node.html (2021). (Accessed: 25 October 2021).

2. Innovation Office - EIP Agrar Schleswig-Holstein, “Brief of the project ’practical test of automatic weed control in organic carrots using a special it infrastructure’ funded by the european innovation partnership.” https://www.eip-agrar-sh.de/en/eip-innovationprojects/2nd-call/robotic-weed-control (2021). (Accessed: 25 October 2021).

3. Deep learning approach for high energy efficient real-time detection of weeds in organic farming;Czymmek,2021

4. Yolov4: Optimal speed and accuracy of object detection;Bochkovskiy,2020

5. Concept and virtual prototype of a rotary hoe for intra-row weed control in row crops;Gobor;Poljoprivredna tehnika XXXI,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A weed control approach in Christmas tree production based on tree crown detection using remote sensing and deep learning;Optics, Photonics, and Digital Technologies for Imaging Applications VIII;2024-06-18

2. Road marking detection from UAV perspective based on improved YOLOv3;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

3. Review of Energy-Efficient Embedded System Acceleration of Convolution Neural Networks for Organic Weeding Robots;Agriculture;2023-11-06

4. Horticulture image based weed detection in feature extraction with dimensionality reduction using deep learning architecture;2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP);2023-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3