Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data
Author:
Affiliation:
1. Universiti Putra Malaysia, Department of Civil Engineering, Faculty of Engineering, Serdang, Selango
Publisher
SPIE-Intl Soc Optical Eng
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area
2. Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/ land cover classification
3. Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images
4. A refined classification approach by integrating Landsat Operational Land Imager (OLI) and RADARSAT-2 imagery for land-use and land-cover mapping in a tropical area
5. Comparative evaluation of the sensitivity of multi-polarised SAR and optical data for various land cover;Chauhan,2016
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Developing a Comprehensive Oil Spill Detection Model for Marine Environments;Remote Sensing;2024-08-21
2. Assessment of petroleum contamination in soil, water, and atmosphere: a comprehensive review;International Journal of Environmental Science and Technology;2024-04-21
3. Remote sensing imagery segmentation in object-based analysis: A review of methods, optimization, and quality evaluation over the past 20 years;Remote Sensing Applications: Society and Environment;2023-11
4. Land Use and Land Cover Change Detection Using the Random Forest Approach: The Case of The Upper Blue Nile River Basin, Ethiopia;Global Challenges;2023-09-17
5. Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data;International Journal of Applied Earth Observation and Geoinformation;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3