An approach to near-lossless hyperspectral data compression using deep autoencoder
Author:
Publisher
SPIE
Reference18 articles.
1. Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding;Qian;Optical Engi-neering,1996
2. Progressive 3-D Coding of Hyperspectral Images Based on JPEG 2000
3. Unified Lossy and Near-Lossless Hyperspectral Image Compression Based on JPEG 2000
4. Spectral compression of hyperspectral images by means of nonlinear principal component analysis decorrelation;Licciardi,2014
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Data Compression Method for Wellbore Stability Monitoring Based on Deep Autoencoder;Sensors;2024-06-20
2. Adaptive Two-Stage Multisensor Convolutional Autoencoder Model for Lossy Compression of Hyperspectral Data;IEEE Transactions on Geoscience and Remote Sensing;2023
3. Investigating the influence of hyperspectral data compression on spectral unmixing;Image and Signal Processing for Remote Sensing XXVIII;2022-10-26
4. Impact of different compression rates for hyperspectral data compression based on a convolutional autoencoder;Image and Signal Processing for Remote Sensing XXVII;2021-09-12
5. Convolution Neural Network based lossy compression of hyperspectral images;Signal Processing: Image Communication;2021-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3