Author:
Dash Prajna Paramita,Yazdani Amirnaser
Abstract
This paper proposes a control strategy for important transients of a single-stage, three-phase, PV system that is connected to a distribution network. The proposed control strategy adopts an inner current-control loop and an outer DC-link voltage control loop. The current-control mechanism renders the PV system protected against external faults, enables control of the DC-link voltage and, therefore, controls/maximizes the PV system power output. The paper also proposes a feed-forward compensation strategy for the DC-link voltage control loop to mitigate the impact of the nonlinear characteristic of the PV array on the closed-loop stability, and to permit design and optimization of the DC-link voltage controller for a wide range of operating conditions. A mathematical model and a control design methodology are presented for the PV system, and it is shown that under the proposed control, the PV system fulfills the operational requirements of a grid-connected PV system. The effectiveness of the proposed control strategy and the most important transients of the PV system are evaluated through simulation studies conducted on a detailed switched model of the PV system in the PSCAD/EMTDC software environment.
Subject
Energy Engineering and Power Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献