A Mathematical Model and Performance Evaluation for a Single-Stage Grid-Connected Photovoltaic (PV) System

Author:

Dash Prajna Paramita,Yazdani Amirnaser

Abstract

This paper proposes a control strategy for important transients of a single-stage, three-phase, PV system that is connected to a distribution network. The proposed control strategy adopts an inner current-control loop and an outer DC-link voltage control loop. The current-control mechanism renders the PV system protected against external faults, enables control of the DC-link voltage and, therefore, controls/maximizes the PV system power output. The paper also proposes a feed-forward compensation strategy for the DC-link voltage control loop to mitigate the impact of the nonlinear characteristic of the PV array on the closed-loop stability, and to permit design and optimization of the DC-link voltage controller for a wide range of operating conditions. A mathematical model and a control design methodology are presented for the PV system, and it is shown that under the proposed control, the PV system fulfills the operational requirements of a grid-connected PV system. The effectiveness of the proposed control strategy and the most important transients of the PV system are evaluated through simulation studies conducted on a detailed switched model of the PV system in the PSCAD/EMTDC software environment.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power quality improvement for hybrid AC/DC with grid connected control;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

2. Power enhancement of transformer less single-phase grid connected solar-wind energy conversion system for various environmental conditions;International Journal of Emerging Electric Power Systems;2022-02-22

3. NPC five level inverter using SVPWM for Grid-Connected Hybrid Wind-Photovoltaic Generation System;Advances in Science, Technology and Engineering Systems Journal;2020-12

4. Investigation of Var Compensation Schemes in Unbalanced Distribution Systems;Complexity;2019-10-28

5. Enhancement of Solar Farm Connectivity With Smart PV Inverter PV-STATCOM;IEEE Transactions on Sustainable Energy;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3