A Hybrid Decision Tree Model for Fast Voltage Contingency Screening and Ranking

Author:

Patidar Narayan Prasad,Sharma Jaydev

Abstract

This paper presents a new decision tree (DT) based approach for fast voltage contingency screening and ranking for on-line applications in energy management systems. The hybrid decision tree model is developed to learn all the selected contingencies simultaneously, therefore fewer DTs are required. To reduce the size and improve the accuracy of the decision tree, the K-class problem is converted into the set of K two-class problems, and separate decision tree modules are trained for each of the two class problems. All the selected contingencies are presented to the filter module, which is trained to separate them in critical and non-critical contingency classes, which reduces the burden on ranking modular DT. The critical contingencies screened out by the filter module are presented to the ranking modular decision tree for their further ranking. To measure the severity of contingencies, bus voltage violation based scalar performance index is used. Full AC load flow is performed to generate the training and testing patterns for the proposed hybrid decision tree, under each contingency. The effectiveness of the proposed approach is tested on IEEE test systems. Once trained, a hybrid decision tree method gives fast and accurate screening and ranking of contingencies for unknown load patterns.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A least square support vector machine-based approach for contingency classification and ranking in a large power system;Cogent Engineering;2016-02-08

2. Application of Support Vector Machines for Fast and Accurate Contingency Ranking in Large Power System;Advances in Intelligent Systems and Computing;2016

3. Supervised Learning Paradigm Based on Least Square Support Vector Machine for Contingency Ranking in a Large Power System;Proceedings of the International Congress on Information and Communication Technology;2016

4. Supervised learning approach to online contingency screening and ranking in power systems;International Journal of Electrical Power & Energy Systems;2012-06

5. Soft Computing;Studies in Computational Intelligence;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3