Author:
Patidar Narayan Prasad,Sharma Jaydev
Abstract
This paper presents a new decision tree (DT) based approach for fast voltage contingency screening and ranking for on-line applications in energy management systems. The hybrid decision tree model is developed to learn all the selected contingencies simultaneously, therefore fewer DTs are required. To reduce the size and improve the accuracy of the decision tree, the K-class problem is converted into the set of K two-class problems, and separate decision tree modules are trained for each of the two class problems. All the selected contingencies are presented to the filter module, which is trained to separate them in critical and non-critical contingency classes, which reduces the burden on ranking modular DT. The critical contingencies screened out by the filter module are presented to the ranking modular decision tree for their further ranking. To measure the severity of contingencies, bus voltage violation based scalar performance index is used. Full AC load flow is performed to generate the training and testing patterns for the proposed hybrid decision tree, under each contingency. The effectiveness of the proposed approach is tested on IEEE test systems. Once trained, a hybrid decision tree method gives fast and accurate screening and ranking of contingencies for unknown load patterns.
Subject
Energy Engineering and Power Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献