Author:
Goldstein Benjamin A,Polley Eric C,Briggs Farren B. S.
Abstract
The Random Forests (RF) algorithm has become a commonly used machine learning algorithm for genetic association studies. It is well suited for genetic applications since it is both computationally efficient and models genetic causal mechanisms well. With its growing ubiquity, there has been inconsistent and less than optimal use of RF in the literature. The purpose of this review is to breakdown the theoretical and statistical basis of RF so that practitioners are able to apply it in their work. An emphasis is placed on showing how the various components contribute to bias and variance, as well as discussing variable importance measures. Applications specific to genetic studies are highlighted. To provide context, RF is compared to other commonly used machine learning algorithms.
Subject
Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献