Abstract
Given a multiple testing situation, the null hypotheses that appear to have sufficiently low probabilities of truth may be rejected using a simple, nonparametric method based on decision theory. This applies not only to posterior levels of belief, but also to conditional probabilities in the sense of relative frequencies, as seen from their equality to local false discovery rates (dFDRs). This approach neither requires the estimation of probability densities, nor of their ratios. Decision theory can also inform the selection of false discovery rate weights. An application to gene expression microarrays is presented with a discussion of the applicability of the assumption of "clumpy dependence."
Subject
Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献