Learning from Past Treatments and Their Outcome Improves Prediction of In Vivo Response to Anti-HIV Therapy

Author:

Saigo Hiroto,Altmann Andre,Bogojeska Jasmina,Müller Fabian,Nowozin Sebastian,Lengauer Thomas

Abstract

Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combinations of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations. Consequently, the genome of the viral target proteins is sequenced and inspected for resistance mutations as part of routine diagnostic procedures for ensuring an effective treatment. For predicting response to a combination therapy, currently available computer-based methods rely on the genotype of the virus and the composition of the regimen as input. However, no available tool takes full advantage of the knowledge about the order of and the response to previously prescribed regimens. The resulting high-dimensional feature space makes existing methods difficult to apply in a straightforward fashion. The machine learning system proposed in this work, sequence boosting, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal features, by utilizing the recent advancements in data mining and boosting.When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients from the EuResist integrated database, sequence boosting achieved superior performance compared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the discriminative treatment information.Analysis of feature importance values provided by our model confirmed known facts regarding HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past had poor treatment perspectives today. Furthermore, our model revealed novel biological insights. More precisely, the combination of previously used drugs with their in vivo response is more informative than the information of previously used drugs alone. Using this information improves the performance of systems for predicting therapy outcome.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3