A Three Component Latent Class Model for Robust Semiparametric Gene Discovery

Author:

Alfo' Marco,Farcomeni Alessio,Tardella Luca

Abstract

We propose a robust model for discovering differentially expressed genes which directly incorporates biological significance, i.e., effect dimension. Using the so-called c-fold rule, we transform the expressions into a nominal observed random variable with three categories: below a fixed lower threshold, above a fixed upper threshold or within the two thresholds. Gene expression data is then transformed into a nominal variable with three levels possibly originated by three different distributions corresponding to under expressed, not differential, and over expressed genes. This leads to a statistical model for a 3-component mixture of trinomial distributions with suitable constraints on the parameter space. In order to obtain the MLE estimates, we show how to implement a constrained EM algorithm with a latent label for the corresponding component of each gene. Different strategies for a statistically significant gene discovery are discussed and compared. We illustrate the method on a little simulation study and a real dataset on multiple sclerosis.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3