Multiple Imputation of Missing Phenotype Data for QTL Mapping

Author:

Bobb Jennifer F,Scharfstein Daniel O.,Daniels Michael J.,Collins Francis S,Kelada Samir

Abstract

Missing phenotype data can be a major hurdle to mapping quantitative trait loci (QTL). Though in many cases experiments may be designed to minimize the occurrence of missing data, it is often unavoidable in practice; thus, statistical methods to account for missing data are needed. In this paper we describe an approach for conjoining multiple imputation and QTL mapping. Methods are applied to map genes associated with increased breathing effort in mice after lung inflammation due to allergen challenge in developing lines of the Collaborative Cross, a new mouse genetics resource. Missing data poses a particular challenge in this study because the desired phenotype summary to be mapped is a function of incompletely observed dose-response curves. Comparison of the multiple imputation approach to two naive approaches for handling missing data suggest that these simpler methods may yield poor results: ignoring missing data through a complete case analysis may lead to incorrect conclusions, while using a last observation carried forward procedure, which does not account for uncertainty in the imputed values, may lead to anti-conservative inference. The proposed approach is widely applicable to other studies with missing phenotype data.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics,Genetics,Molecular Biology,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3