Analysis on a Counter-Current Flow Hemodialyzer

Author:

Loney Norman W

Abstract

The closed form solution to the conjugated boundary value problem posed by a counter current hemodialyzer facilitates the estimation of the overall mass transfer coefficient. Comparison of the proposed model results with published experimental data shows good agreement for Urea and Creatinine clearances over a published range of blood and dialyzate flow rates. This model predicts clearances with a maximum error of less than 4% for both Urea and Creatinine when blood flow is 75% of the dialyzate flow. However, when both blood and dialyzate flows are identical the model over predicts the experimental data by 1.47% in the case of Urea and 4.75 for Creatinine flows of 300 ml/min. Although the concentration profile is an infinite series involving confluent hypergeometric functions, 2 terms of the series were sufficient (Mathematica notebook program) to produce these results. Overall mass transfer coefficients can now be deduced from the Sherwood numbers and provide possible improvement over currently used area coefficients.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3