Optimal Solution of MINLP Problems Using Modified Genetic Algorithm

Author:

Danish Mohd.,Kumar Surendra,Qamareen Arees,Kumar Shashi

Abstract

Many engineering and industrial constrained optimization problems can be modeled as mixed integer nonlinear programming (MINLP) problems e.g. heat and mass exchange networks, reactor-separator networks, batch plant design and scheduling, flow sheeting etc. The global optima in such problems are ill-conditioned due to the involvement of continuous and discrete variables, nonlinearities and non-convexities.This research work concerns the development of a modified GA and to apply it to find the solutions of several difficult MINLP problems. The modified GA utilizes tournament selection, SBX cross-over, polynomial mutation and variable elitism operators, along with distance based dynamic penalty with anti-distortion. The algorithm has been programmed in MATLAB. Six MINLP problems, which emerged from the optimal design of sequential multi-product batch plants, and considered as difficult ones in literature, were successfully solved. The solutions thus obtained are either comparable or better than those available in literature. The above combination of various schemes in modified GA helps in achieving faster convergence to global optimum with comparatively less violation of constraints; population size required is also less. The effect of various parameters on the convergence to global optimum has also been studied along with setting of various parameters. In future, efforts may be devoted to search proper merging strategy of quality operators for the design of a general purpose and robust GA so as to use it for a variety of engineering, specifically process engineering problems, more effectively.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3