Dynamic Simulation and Optimization of Two-Stage Extractive Alcoholic Fermentation Process: Design Impact on Controllability

Author:

Nandong Jobrun,Samyudia Yudi,Tadé Moses O

Abstract

In this paper, we address dynamic controllability of the two different designs of extractive fermentation process, namely one-stage and two-stage designs. The operating conditions that maximize yields and productivity for both designs are determined by optimization using the method of factorial design and response surface analysis. The results show that in terms of the achievable yield and productivity, the performance of the two-stage design is comparable to that of the single-stage, but the former design leads to a significant reduction in the fermentor size required. Furthermore, we analyze the dynamic controllability of the two designs of extractive fermentation process using a so-called control relevant metrics to examine their closed-loop dynamic performance in the face of uncertainty. This analysis reveals that the single-stage design has more favorable dynamic controllability than the two-stage design.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3