Prediction of Deposition Patterns in a Pilot-Scale Spray Dryer Using Computational Fluid Dynamics (CFD) Simulations

Author:

Kota Kashinath,Langrish Tim

Abstract

This paper presents the predictions of deposition patterns using CFD simulations based on transient-flow behaviour of a 1.6 m high, 0.8 m diameter, pilot-scale spray dryer, following from previous studies assessing the use of Computational Fluid Dynamics (CFD) simulations to predict the deposition on a plate in a simple box configuration. The predicted deposition fluxes here have been compared with experimental data for the deposition fluxes of skim milk, maltodextrin and water. The CFD simulation results suggested that the effect of transient air flows on the vertical patterns of deposition fluxes with distance up the dryer wall for no inlet air swirl is small. The CFD simulations underpredicted the experimental values of the deposition fluxes by approximately 50%, but the simulations predicted the same experimental trends when changing the main air flow rate through the dryer. The experimentally-measured deposition fluxes were 38%, on average, higher at a main air flow rate of 113 kg/h compared with those at a flow rate of 88 kg/h. The CFD simulations predicted an average increase in deposition flux of 26% at 113 kg/h compared with 88 kg/h, so the trends with this change in operating conditions have been predicted well by the CFD simulations. One-way particle coupling has therefore shown correct trends in the deposition fluxes with respect to both positions in the dryer and different operating conditions, and such one-way coupling is several orders of magnitude faster than the more rigorous two-way coupling.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3