Modeling of Phenol Degradation in Spouted Bed Contactor Using Artificial Neural Network (ANN)

Author:

Dabhade Madhukar A.,Saidutta M. B.,Murthy D. V. R.

Abstract

Presence of phenol and phenolic compounds in various wastewaters and its harmful effects has led to the use of different treatment methods. Work on biological methods shows the use of different microorganisms and different bioreactors so as to improve the removal efficiency economically. The present work deals with the use of N. hydrocarbonoxydans (NCIM 2386), an actinomycetes, for the degradation of phenol. N. hydrocarbonoxydans was immobilized on GAC and used in a spouted bed contactor for effective contact of microorganisms and the substrate. The contactor performance was studied by varying flow rates, influent concentrations and the solids loading in the contactor. The effect of these variables on phenol degradation was investigated and modeling study was carried out using the artificial neural network (ANN). A feed forward neural network with back propagation was used for the model development. The experiments were planned as per the face centered cube design (FCCD) and used for training of the model, whereas data from four other experimental runs were used for testing and validation of the model. The network was optimized for the number of neurons based on the mean square error. The ANN model with three layers with three input neurons, eight neurons in hidden layers and one output neuron was found to predict effectively the effluent concentration for the given operating conditions in the spouted bed contactor. The mean square error was found to be 9.318e-12 for this ANN model. Also the experimental data was used to develop second order nonlinear empirical model obtained using multiple regression (MR) and the results compared with ANN using correlation coefficient (R2), average absolute error (AAE) and root mean square error (RMSE). Results show that R2, AAE and RMSE values of MR model were 0.9363, 2.085 % and 2.338 % respectively, while in case of ANN model these values were 0.9995, 0.59 % and 1.263 % respectively. This shows that ANN model prediction is better than multiple regression model prediction.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3