Pork Quality Classification Using a Hyperspectral Imaging System and Neural Network

Author:

Jun Qiao,Ngadi Michael,Wang Ning,Gunenc Aynur,Monroy Mariana,Gariepy Claude,Prasher Shiv

Abstract

Pork quality is usually determined subjectively as PSE, PFN, RFN, RSE and DFD based on color, texture and exudation of the meat. In this study, a hyperspectral-imaging-based technique was developed to achieve rapid, accurate and objective assessment of pork quality. The principal component analysis (PCA) and stepwise operation methods were used to select feature waveband from the entire spectral wavelengths (430 to 980 nm). Then the feature waveband images were extracted at the selected feature wavebands from raw hyperspectral images, and the average reflectance (R) was calculated within the whole loin-eye area. Artificial neural network was used to classify these groups. Results showed that PCA analysis had a better performance than that of stepwise operation for feature waveband images selection. The 1st derivative data gave a better result than that of mean reflectance spectra data. The best classified result was 87.5% correction. The error frequency showed that RSE samples were easier to classify. The PFN and PSE samples were difficult to separate from each other.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3