Optimized Neural Network for Instant Coffee Classification through an Electronic Nose

Author:

Bona Evandro,da Silva Rui Sérgio dos Santos Ferreira,Borsato Dionísio,Bassoli Denisley Gentil

Abstract

Flavor is one of the most important features of food, especially of coffee. The evaluation of this sensory feature is complex yet indispensable in quality control of instant coffees. In this work, an artificial neural network (ANN) was developed for instant coffee classification based on an electronic nose (EN) aroma profile. To this purpose, a hybrid algorithm was developed, containing: bootstrap resample methodology; factorial design and sequential simplex optimization to tune network parameters; an ensemble multilayer perceptron (MLP) trained with backpropagation for coffee classification; and causal index procedure for knowledge extraction from the trained ANN. The produced neural network classifier correctly recognizes 100% of coffees studied. Furthermore, the causal index employment allowed inference of some rules on how the coffees were separated according to the sensors available in EN. The results indicate that the applied methodology is a promising tool for instant coffee quality control.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Reference11 articles.

1. Artificial Neural Networks : A new methodology for industrial market segmentation Industrial Marketing;Fish;Management,1995

2. Correlation between cup quality and chemical attributes of Brazilian coffee;Farah;Food Chemistry,2006

3. Optimization of sensor array and detection of stored duration of wheat by electronic nose Journal of;Zhang;Food Engineering,2007

4. A new neural network approach classifies olfactory signals with high accuracy and;Linder;Food Quality Preference,2003

5. Understanding neural networks as statistical tools;Warner;American Statistician,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3