Desulfurization of FCC Gasoline: Novel Catalytic Processes with Zeolites

Author:

Jaimes Lisette,Tonetto Gabriela M.,Ferreira María Lujan,de Lasa Hugo

Abstract

New regulations aim to achieve a drastic sulfur emission reduction in fuels and impose very low sulfur concentration caps (30 ppm in gasoline and 15 ppm in diesel) that will be in full force in 2009. FCC gasoline represents almost 40% of the total gasoline pool and it is the major sulfur contributor, with up to 85–95%. To deal with this situation, most refiners have adopted post-treating FCC gasoline processes given they are more viable and less costly for meeting sulfur environmental regulation limits. In this respect, one should notice that conventional hydro-treating of FCC gasoline removes sulfur decreasing gasoline quality with octane number losses. The use of hydrogen also adds important costs to the desulfurization. As a result, new promising catalytic desulfurization processes are being proposed using zeolites as adsorbents/catalysts. These new approaches may lead to novel technologies, for example, with the case of gasoline de-hydrosulfidation with no hydrogen addition and alternatively to adsorption processes with co-feeding of an H-donor being pioneered at CREC University of Western Ontario. In both approaches sulfur is efficiently removed leaving the gasoline octane number index intact. The zeolite structure, the framework composition and the properties of the charge compensating cations are all parameters with major impact on catalytic desulfurization. In particular, shape selectivity is expected to play an important role in determining product selectivity when condensation reactions are significant. In this respect, the H-ZSM5 zeolite appears to have the adequate balance of Brönsted acidity and Lewis basicity to efficiently convert thiophene to H2S, with minimal transformation of benzothiophene and oligomers into coke. From a chemical reactor engineering point of view, novel gasoline desulfurization can be implemented using both fixed and fluidized bed reactors. Fluidized circulating bed reactors display high sulfur removal ability allowing frequent catalyst removal from the catalytic bed and coke combustion in a twin fluidized regeneration unit. Fixed bed units with adsorption/desorption cycles, used in conjunction with and without H donor co-reactants, lead to selective adsorption and efficient removal of sulfur species.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3